客户案例

老百姓大药房:数据智能化推动健康服务平台的数字化进程

发布日期:2022-01-13 07:14:21浏览量:9

作为拥有直营药房、并购药房、加盟、联盟、中药厂、国医馆等多个业态并存的综合型集团,老百姓大药房近几年的企业战略是打造科技驱动的健康服务平台。从2016年起,老百姓大药房就开始启用BI工具,推进健康服务平台的数字化进程。2018年,老百姓大药房的BI数字化建设开始进入智能决策辅助阶段。

老百姓大药房的数据分析是由算法专家主导的数学模型与BI展示结合,以下两个案例可看到具体的实施情况以及成果。

1、基于精准预测的门店自动请货

备货过多,容易造成库存积压;备货过少,容易造成库存短缺。如何合理地请货备货,是所有零售行业都会遭遇的大难题。合理备货的前提是对商品销售的精准预测。老百姓大药房的销售预测模型对每天销售预测的准确率可达98%以上。结合门店销售预测以及门店库存,系统自动计算各门店每天需要请货的品种及请货的数量后,在BI报表中显示每日请货的清单报表。

有了算法模型和BI报表的帮助,门店店员不需要具备数学建模的能力,也不需要每天导出数据手工统计,只需要每天在数据更新后,按照BI报表上指示的请货品种和请货数量,直接请货下单即可。

自从实施了算法模型+BI报表的决策辅助后,门店总体的请货条目数下降了10%,从而减少了大量不必要的商品备货;虽请货条目数有所下降,但门店的请货满足率并没受到影响,反而请货满足率较未实施前提升了17%,保证了门店库存充足。

2、物流拣货人效监控

老百姓大药房物流总部共有170多名物流员工,每日拣货订单量达5-7万。为确保商品及时从仓库送达各门店,需要对现场拣货作业的人员的工作效率进行实时监控,发现效率欠佳的员工会尽早进行干预。

如上图所示,BI报表中两条灰色曲线代表员工每个时段工作量的正常范围,黄线代表该员工当天实际的工作量。若黄线在上下两灰线之间运行,则代表员工工作状态正常;若黄线持续低于灰色下线,则代表该员工当天工作效率低于正常水平,管理人员需到现场进行干预;若黄线持续高于灰色上线,则代表该员工当天工作效率高于正常水平,管理人员可于休息期间对员工进行访谈,探索总结提升效率的方法。

标签:, ,

相关推荐